

## MODULE SPECIFICATION PROFORMA

| Module Code:                             | ENG770 |               |      |  |
|------------------------------------------|--------|---------------|------|--|
| Module Title: Mechatronics System Design |        |               |      |  |
| Level:                                   | 7      | Credit Value: | 20   |  |
| Cost<br>Centre(s):                       | GSEE   | JACS3 code:   | H640 |  |

| School:                               | Applied Science,<br>Computing & Engineering | Module<br>Leader: | Andrew Sharp |         |
|---------------------------------------|---------------------------------------------|-------------------|--------------|---------|
|                                       |                                             |                   |              |         |
| Scheduled learning and teaching hours |                                             |                   |              | 40 hrs  |
| Guided independent study              |                                             |                   |              | 160 hrs |
| Placement                             |                                             |                   |              | 0 hrs   |
| Module duration (total hours)         |                                             |                   |              | 200 hrs |

| Programme(s) in which to be offered (not including exit awards) | Core | Option |
|-----------------------------------------------------------------|------|--------|
| MSc Engineering (Mechatronics)                                  | ~    |        |

| Pre-requisites |  |
|----------------|--|
| N/A            |  |

| Office use only                                                      |              |
|----------------------------------------------------------------------|--------------|
| Initial approval: 19/06/2018                                         | Version no:1 |
| With effect from: 01/09/2018                                         |              |
| Date and details of revision: 29/4/21 APSC approve correction to the | Version no:2 |
| assessment table (learning outcomes to be met by assessment          |              |

# Module Aims

This module aims to develop the students understanding and concepts of mechanical/electrical control, by enhancing their knowledge of applications in mechatronic and industrial engineering so that they will be able to design a mechatronic system to meet an industrial specification.

| Intended Learning Outcomes |           |                                                    |  |  |  |
|----------------------------|-----------|----------------------------------------------------|--|--|--|
|                            | Key skill | s for employability                                |  |  |  |
|                            | KS1       | Written, oral and media communication skills       |  |  |  |
|                            | KS2       | Leadership, team working and networking skills     |  |  |  |
|                            | KS3       | Opportunity, creativity and problem solving skills |  |  |  |
|                            | KS4       | Information technology skills and digital literacy |  |  |  |
|                            | KS5       | Information management skills                      |  |  |  |
|                            | KS6       | Research skills                                    |  |  |  |
|                            | KS7       | Intercultural and sustainability skills            |  |  |  |
|                            | KS8       | Career management skills                           |  |  |  |
|                            | 1/00      |                                                    |  |  |  |

- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

| At the end of this module, students will be able to |                                                                                | Key Skills |      |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------|------------|------|--|--|
| 1                                                   | Apply advance knowledge from theoretical work and                              | KS1        | KS3  |  |  |
|                                                     |                                                                                | KS4        | KS6  |  |  |
|                                                     | investigative work to solve mechatronic problems;                              | KS10       |      |  |  |
| 2                                                   | Demonstrate on in denth understanding of modelstandia                          | KS1        | KS4  |  |  |
|                                                     | Demonstrate an in depth understanding of mechatronic engineering and concepts; | KS6        | KS10 |  |  |
|                                                     |                                                                                |            |      |  |  |
| 3                                                   | Evaluate components and instruments, from manufacturers'                       | KS1        | KS3  |  |  |
|                                                     | data and principles of operation, in order to determine the most               | KS4        | KS6  |  |  |
|                                                     | appropriate technology for a given application;                                | KS10       |      |  |  |
|                                                     | Plan, design and test a mechatronic system.                                    | KS1        | KS4  |  |  |
| 4                                                   |                                                                                | KS6        | KS10 |  |  |
|                                                     |                                                                                |            |      |  |  |
|                                                     | Develop suitable Matlab models to implement a process.                         | KS1        | KS4  |  |  |
| 5                                                   |                                                                                | KS6        | KS10 |  |  |
|                                                     |                                                                                |            |      |  |  |
| Transferable skills and other attributes            |                                                                                |            |      |  |  |
| 1. Communication                                    |                                                                                |            |      |  |  |
| 2. ICT Technologies                                 |                                                                                |            |      |  |  |
| 3. Time management and organisation                 |                                                                                |            |      |  |  |
| 4. Interpersonal skills                             |                                                                                |            |      |  |  |
| 5. Problem solving                                  |                                                                                |            |      |  |  |
| 6. Information handling including numeracy          |                                                                                |            |      |  |  |

### Derogations

Credits shall be awarded by an assessment board for those Level 7 modules in which an overall mark of at least 50% has been achieved with a minimum mark of 40% in each assessment element.

### Assessment:

Indicative Assessment Tasks:

Assessment One: The learning outcomes will be assessed by a case study design exercise which requires the student to interpret, specify, design, implement and evaluate a mechatronics system. This will be individually monitored and assessed.

Assessment Two: Learning outcomes will be assessed by an unseen 2 hour examination.

| Assessment<br>number | Learning<br>Outcomes to<br>be met | Type of assessment | Weighting<br>(%) | Duration<br>(if exam) | Word count<br>(or equivalent if<br>appropriate) |
|----------------------|-----------------------------------|--------------------|------------------|-----------------------|-------------------------------------------------|
| 1                    | 4, 5                              | Case Study         | 50               | N/A                   | 2000                                            |
| 2                    | 1,2, 3                            | Examination        | 50               | 2 hours               |                                                 |

#### Learning and Teaching Strategies:

The module will be delivered through practical investigation/demonstrations and Computer Simulations in support of formal lectures and tutorials. Also there will be extensive use of VLE (Moodle) for additional support and formative work outside of timetabled contact periods.

## Syllabus outline:

Modelling and simulation of dynamic processes: Different types of mathematical models for an industrial dynamic process; Mechanical/Electrical analysis-based modelling; Empirical data-based modelling; Linear time invariant models; Model structure selection; Model parameter identification/estimation.

Analysis and simulation of a range of mechanical/electrical transducers and actuators for analogue/ digital interfaces such as; pressure/heat/chemical/electromechanical/optical.

Electronic interface design between the digital controller and the analogue/digital mechatronic processes to maximize the speed, efficiency and reliability of their operation.

Mechatronic systems design implementation using High level software industry standards, such as VEE /LabView and Matlab, and lower level control using Embedded micro controller functions. Use of PIC's, dedicated industrial microprocessors and PLC interfaces.

Indicative Bibliography:

**Essential reading** 

Bolton W (2013) Mechatronics: Pearson Higher Ed

Other indicative reading

Devdas Shetty, Kolk Richard; (2012); Mechatronics System Design; CL Engineering

Alciatore D.; (2012); Introduction to Mechatronics and Measurement Systems; McGraw-Hill

Bagad V.S.; (2010) Mechatronics; Technical Publications Pune

Bishop R.H.; (2002) Mechatronics handbook : CRC Press